

MARTIN® Screen Vibrator

For more than 60 years people have counted on Martin Engineering to provide vibratory solutions.

The Martin® Screen Vibrator offers improved pricing, delivery from stock, and an unsurpassed 3-year warranty.

BENEFITS

High Performance

Units provide up to 16,500 lbs (7483 kg) of centrifugal force for efficient material separation.

Certified for Hazardous Duty

Explosion-proof models are ATEX, cETLus, and IECEx certified for hazardous duty (non-explosion proof models also available).

Inverter-Duty Rated

Can be used with Variable Frequency Drive in ordinary and hazardous atmospheres.

Low or No Maintenance

Greasable or maintenance-free options.

Quiet Operation

Long-life bearings produce less noise than oil bath bearings.

Dual-Voltage Units

Can be ran at low or high voltage. Any 3-phase electrical rating is available.

Adjustable Output

Adjust the eccentric weights to match 3-panel or 4-panel screens.

• Simple Installation

Provided with all the hardware you need to bolt vibrator to screen.

Dependable Engineering

Designed and manufactured in the USA and by other Martin companies worldwide.

Proven Design

Martin Engineering has been designing and manufacturing vibrators for more than 70 years.

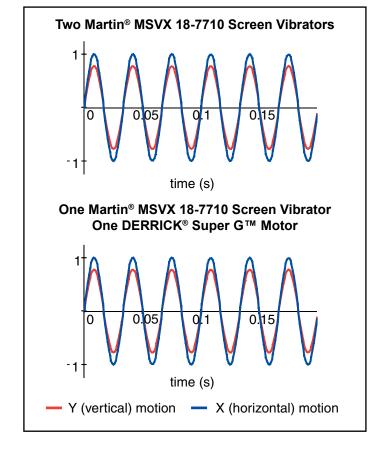
AVAILABLE OPTIONS

- Self-Adjusting Swing Weights
- Maintenance-Free Units
- Custom Mounting Configurations to Fit Your Application

TECHNICAL DATA SHEET

MARTIN® SCREEN VIBRATORS

P/N	Model	Frame	RPM	Unbalance in-lbs (kg-cm)	Centrifugal Force lbs (kg)	Weight lbs (kg)	Power Output Horsepower	Max. Current Amps
				60 Hz	60 Hz	60 Hz	60 Hz	60 Hz/460V
MSVX70C04	MSVX18-7710	70	1800	82.5 (95.1)	7710 (3497)	366 (166)	2.5	3.7
MSVX75C04	MSVX18-10800	75	1800	117.3 (135.2)	10800 (4899)	373 (169)	2.5	3.7
MSVX90C04	MSVX18-16500	90	1800	179.2 (206.5)	16500 (7483)	567 (257)	3.8	5.1


P/N	Model	Frame	RPM	Unbalance in-lbs (kg-cm)	Centrifugal Force lbs (kg)	Weight lbs (kg)	Power Output Horsepower	Max. Current Amps
				50 Hz	50 Hz	50 Hz	50 Hz	50 Hz/380V
MSVX70C04	MSVX18-7710	70	1500	120.4 (138.7)	7710 (3497)	385 (175)	2.5	4.3
MSVX75C04	MSVX18-10800	75	1500	168.9 (194.6)	10800 (4899)	395 (179)	2.5	4.3
MSVX90C04	MSVX18-16500	90	1500	250.3 (288.4)	16500 (7483)	604 (274)	3.8	5.9

MARTIN® SCREEN VIBRATOR COMPARATIVE TESTING

To assure its suitability for direct replacement, the Martin® Screen Vibrator was tested in direct comparison to the DERRICK® Super G™ Vibrating Motor.

In the testing of individual and dual-1800 rpm vibrator installations, vibration was monitored in two directions: perpendicular to the material flow (Y) and parallel to the material flow (X). Measurements were performed using accelerometers at a number of fixed points along the screen.

As seen in the graphs at the right, the amplitude and frequency of screen deck vibration were shown to be the same.

